Problem Statement:
Given a string s
and a pattern p
, implement a regular expression matching algorithm to determine if s
matches p
. The pattern may include the characters:
- ‘.’ (dot), which matches any single character.
- ‘*’ (star), which matches zero or more of the preceding element.
The matching should cover the entire string (not just a substring).
Example:
Input:
s = "aa"
p = "a*"
Output:
True
Explanation: The pattern a*
matches zero or more a
‘s. In this case, the pattern a*
matches the string "aa"
.
Input:
s = "mississippi"
p = "mis*is*p*."
Output:
False
Explanation: The pattern doesn’t match the string.
Approach:
This problem can be efficiently solved using Dynamic Programming (DP). The idea is to build a 2D DP table where each entry dp[i][j]
represents whether the substring s[0..i-1]
matches the pattern p[0..j-1]
.
- Base Case Initialization:
dp[0][0] = true
because an empty string matches an empty pattern.- For any
i > 0
,dp[i][0] = false
because a non-empty string cannot match an empty pattern. - For any
j > 0
,dp[0][j]
is true only if the patternp[0..j-1]
can match an empty string. This happens when the pattern has multiple*
that can match zero characters (e.g.,a*
,.*
).
- DP Transition:
- If
p[j-1]
is a letter (not.
or*
):dp[i][j] = dp[i-1][j-1]
ifs[i-1] == p[j-1]
(or ifp[j-1] == '.'
).
- If
p[j-1]
is*
:- There are two possibilities:
- We don’t use the
*
(i.e., match zero characters of the preceding character):dp[i][j] = dp[i][j-2]
. - We use the
*
to match one or more characters:dp[i][j] = dp[i-1][j]
ifs[i-1] == p[j-2]
orp[j-2] == '.'
.
- We don’t use the
- There are two possibilities:
- If
Time Complexity:
- The time complexity is O(m * n), where
m
is the length of the strings
andn
is the length of the patternp
, because we are filling a DP table of sizem+1
byn+1
.
Space Complexity:
- The space complexity is O(m * n) due to the 2D DP table.
Algorithm:
- Initialize a DP table
dp
of size(m+1) x (n+1)
, wherem
is the length of the strings
andn
is the length of the patternp
. - Set the base cases in the DP table.
- Use a nested loop to fill the DP table according to the recurrence relation described.
- The result will be in
dp[m][n]
.
Code Implementation:
1. C
#include <stdio.h>
#include <stdbool.h>
#include <string.h>
bool isMatch(char* s, char* p) {
int m = strlen(s), n = strlen(p);
bool dp[m+1][n+1];
dp[0][0] = true;
for (int j = 1; j <= n; j++) {
dp[0][j] = (p[j-1] == '*' && dp[0][j-2]);
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (p[j-1] == s[i-1] || p[j-1] == '.') {
dp[i][j] = dp[i-1][j-1];
} else if (p[j-1] == '*') {
dp[i][j] = dp[i][j-2] || ((s[i-1] == p[j-2] || p[j-2] == '.') && dp[i-1][j]);
} else {
dp[i][j] = false;
}
}
}
return dp[m][n];
}
int main() {
char s[] = "aa";
char p[] = "a*";
printf("%s\n", isMatch(s, p) ? "True" : "False");
return 0;
}
2. C++
#include <iostream>
#include <vector>
#include <cstring>
using namespace std;
bool isMatch(string s, string p) {
int m = s.size(), n = p.size();
vector<vector<bool>> dp(m+1, vector<bool>(n+1, false));
dp[0][0] = true;
for (int j = 1; j <= n; j++) {
if (p[j-1] == '*') {
dp[0][j] = dp[0][j-2];
}
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (p[j-1] == s[i-1] || p[j-1] == '.') {
dp[i][j] = dp[i-1][j-1];
} else if (p[j-1] == '*') {
dp[i][j] = dp[i][j-2] || (dp[i-1][j] && (s[i-1] == p[j-2] || p[j-2] == '.'));
}
}
}
return dp[m][n];
}
int main() {
string s = "aa";
string p = "a*";
cout << (isMatch(s, p) ? "True" : "False") << endl;
return 0;
}
3. Java
public class Solution {
public boolean isMatch(String s, String p) {
int m = s.length(), n = p.length();
boolean[][] dp = new boolean[m + 1][n + 1];
dp[0][0] = true;
for (int j = 1; j <= n; j++) {
if (p.charAt(j - 1) == '*') {
dp[0][j] = dp[0][j - 2];
}
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (p.charAt(j - 1) == s.charAt(i - 1) || p.charAt(j - 1) == '.') {
dp[i][j] = dp[i - 1][j - 1];
} else if (p.charAt(j - 1) == '*') {
dp[i][j] = dp[i][j - 2] || (dp[i - 1][j] && (s.charAt(i - 1) == p.charAt(j - 2) || p.charAt(j - 2) == '.'));
}
}
}
return dp[m][n];
}
public static void main(String[] args) {
Solution solution = new Solution();
System.out.println(solution.isMatch("aa", "a*")); // Output: true
}
}
4. Python
def isMatch(s: str, p: str) -> bool:
m, n = len(s), len(p)
dp = [[False] * (n + 1) for _ in range(m + 1)]
dp[0][0] = True
for j in range(1, n + 1):
if p[j - 1] == '*':
dp[0][j] = dp[0][j - 2]
for i in range(1, m + 1):
for j in range(1, n + 1):
if p[j - 1] == s[i - 1] or p[j - 1] == '.':
dp[i][j] = dp[i - 1][j - 1]
elif p[j - 1] == '*':
dp[i][j] = dp[i][j - 2] or (dp[i - 1][j] and (s[i - 1] == p[j - 2] or p[j - 2] == '.'))
return dp[m][n]
# Test the function
print(isMatch("aa", "a*")) # Output: True
5. C#
using System;
public class Solution {
public bool IsMatch(string s, string p) {
int m = s.Length, n = p.Length;
bool[,] dp = new bool[m + 1, n + 1];
dp[0, 0] = true;
for (int j = 1; j <= n; j++) {
if (p[j - 1] == '*') {
dp[0, j] = dp[0, j - 2];
}
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (p[j - 1] == s[i - 1] || p[j - 1] == '.') {
dp[i, j] = dp[i - 1, j - 1];
} else if (p[j - 1] == '*') {
dp[i, j] = dp[i, j - 2] || (dp[i - 1, j] && (s[i - 1] == p[j - 2] || p[j - 2] == '.'));
}
}
}
return dp[m, n];
}
public static void Main() {
Solution solution = new Solution();
Console.WriteLine(solution.IsMatch("aa", "a*")); // Output: True
}
}
6. JavaScript
var isMatch = function(s, p) {
const m = s.length, n = p.length;
const dp = Array.from(Array(m + 1), () => Array(n + 1).fill(false));
dp[0][0] = true;
for (let j = 1; j <= n; j++) {
if (p[j - 1] === '*') {
dp[0][j] = dp[0][j - 2];
}
}
for (let i = 1; i <= m; i++) {
for (let j = 1; j <= n; j++) {
if (p[j - 1] === s[i - 1] || p[j - 1] === '.') {
dp[i][j] = dp[i - 1][j - 1];
} else if (p[j - 1] === '*') {
dp[i][j] = dp[i][j - 2] || (dp[i - 1][j] && (s[i - 1] === p[j - 2] || p[j - 2] === '.'));
}
}
}
return dp[m][n];
};
// Test the function
console.log(isMatch("aa", "a*")); // Output: true
Conclusion:
This algorithm efficiently solves the problem of regular expression matching using Dynamic Programming (DP). The DP approach ensures that we check all possible ways a substring of s
can match the pattern p
. The time and space complexities are O(m * n), where m
and n
are the lengths of the string and the pattern, respectively.