Wildcard Matching Problem
In the Wildcard Matching problem, you are given two strings: a text string s
and a pattern string p
. The pattern string contains two special characters:
'*'
: Matches any sequence of characters (including the empty sequence).'?'
: Matches exactly one character.
The goal is to determine if the pattern p
matches the entire string s
.
Problem Statement:
Given a string s
and a pattern p
, return true
if p
matches s
, and false
otherwise.
Examples:
Example 1:
Input: s = "aa", p = "a*"
Output: true
Explanation: The pattern "a*" matches the entire string "aa".
Example 2:
Input: s = "cb", p = "?a"
Output: false
Explanation: The pattern "?a" does not match the string "cb".
Example 3:
Input: s = "adceb", p = "*a*b"
Output: true
Explanation: The pattern "*a*b" matches the string "adceb".
Example 4:
Input: s = "acdcb", p = "a*c?b"
Output: false
Explanation: The pattern "a*c?b" does not match the string "acdcb".
Approach:
We can solve this problem using Dynamic Programming (DP).
Key Observations:
- The character
'*'
can match zero or more characters, so it requires a special treatment. - The character
'?'
matches exactly one character, so it behaves like a regular character but with an automatic match for any single character. - We need to check every possible combination of how the pattern
p
can match the strings
considering the wildcard characters.
Dynamic Programming Approach:
We can create a DP table dp[i][j]
where:
i
represents the firsti
characters of the strings
.j
represents the firstj
characters of the patternp
.
The value dp[i][j]
will be true
if the substring s[0...i-1]
matches the pattern p[0...j-1]
.
Base Cases:
dp[0][0] = true
: An empty string matches an empty pattern.dp[i][0] = false
for alli > 0
: An empty pattern cannot match a non-empty string.dp[0][j] = true
if the pattern consists of only'*'
characters up toj
. Otherwise, it isfalse
.
Recurrence Relation:
- If
p[j-1] == '?'
orp[j-1] == s[i-1]
, thendp[i][j] = dp[i-1][j-1]
. - If
p[j-1] == '*'
, then:dp[i][j] = dp[i-1][j]
(i.e., treat'*'
as matching one more character ins
).dp[i][j] = dp[i][j-1]
(i.e., treat'*'
as matching zero characters ins
).
Time and Space Complexity:
- Time Complexity: O(m * n), where
m
is the length of strings
andn
is the length of patternp
. We are filling a 2D DP table of sizem x n
. - Space Complexity: O(m * n) for the DP table.
Code Implementations:
1. C:
#include <stdio.h>
#include <string.h>
#include <stdbool.h>
bool isMatch(char *s, char *p) {
int m = strlen(s);
int n = strlen(p);
bool dp[m+1][n+1];
memset(dp, false, sizeof(dp));
dp[0][0] = true; // Both empty string and pattern match
// Initialize the first row for patterns starting with '*'
for (int j = 1; j <= n; j++) {
if (p[j-1] == '*') {
dp[0][j] = dp[0][j-1];
}
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (p[j-1] == s[i-1] || p[j-1] == '?') {
dp[i][j] = dp[i-1][j-1]; // Exact match or '?'
} else if (p[j-1] == '*') {
dp[i][j] = dp[i-1][j] || dp[i][j-1]; // '*' matches one or more characters
}
}
}
return dp[m][n];
}
int main() {
char s[] = "adceb";
char p[] = "*a*b";
printf("%d\n", isMatch(s, p)); // Output: 1 (true)
return 0;
}
2. C++:
#include <iostream>
#include <vector>
using namespace std;
bool isMatch(string s, string p) {
int m = s.size(), n = p.size();
vector<vector<bool>> dp(m + 1, vector<bool>(n + 1, false));
dp[0][0] = true;
for (int j = 1; j <= n; j++) {
if (p[j-1] == '*') {
dp[0][j] = dp[0][j-1];
}
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (p[j-1] == s[i-1] || p[j-1] == '?') {
dp[i][j] = dp[i-1][j-1];
} else if (p[j-1] == '*') {
dp[i][j] = dp[i-1][j] || dp[i][j-1];
}
}
}
return dp[m][n];
}
int main() {
string s = "adceb", p = "*a*b";
cout << isMatch(s, p) << endl; // Output: 1 (true)
return 0;
}
3. Java:
public class Solution {
public boolean isMatch(String s, String p) {
int m = s.length(), n = p.length();
boolean[][] dp = new boolean[m + 1][n + 1];
dp[0][0] = true;
for (int j = 1; j <= n; j++) {
if (p.charAt(j-1) == '*') {
dp[0][j] = dp[0][j-1];
}
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (p.charAt(j-1) == s.charAt(i-1) || p.charAt(j-1) == '?') {
dp[i][j] = dp[i-1][j-1];
} else if (p.charAt(j-1) == '*') {
dp[i][j] = dp[i-1][j] || dp[i][j-1];
}
}
}
return dp[m][n];
}
public static void main(String[] args) {
Solution solution = new Solution();
System.out.println(solution.isMatch("adceb", "*a*b")); // Output: true
}
}
4. Python:
def isMatch(s: str, p: str) -> bool:
m, n = len(s), len(p)
dp = [[False] * (n + 1) for _ in range(m + 1)]
dp[0][0] = True
for j in range(1, n + 1):
if p[j-1] == '*':
dp[0][j] = dp[0][j-1]
for i in range(1, m + 1):
for j in range(1, n + 1):
if p[j-1] == s[i-1] or p[j-1] == '?':
dp[i][j] = dp[i-1][j-1]
elif p[j-1] == '*':
dp[i][j] = dp[i-1][j] or dp[i][j-1]
return dp[m][n]
# Example usage:
print(isMatch("adceb", "*a*b")) # Output: True
5. C#:
public class Solution {
public bool IsMatch(string s, string p) {
int m = s.Length, n = p.Length;
bool[,] dp = new bool[m + 1, n + 1];
dp[0, 0] = true;
for (int j = 1; j <= n; j++) {
if (p[j-1] == '*') {
dp[0, j] = dp[0, j-1];
}
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (p[j-1] == s[i-1] || p[j-1] == '?') {
dp[i, j] = dp[i-1, j-1];
} else if (p[j-1] == '*') {
dp[i, j] = dp[i-1, j] || dp[i, j-1];
}
}
}
return dp[m, n];
}
public static void Main(string[] args) {
Solution solution = new Solution();
Console.WriteLine(solution.IsMatch("adceb", "*a*b")); // Output: True
}
}
6. JavaScript:
var isMatch = function(s, p) {
const m = s.length, n = p.length;
const dp = Array.from({ length: m + 1 }, () => Array(n + 1).fill(false));
dp[0][0] = true;
for (let j = 1; j <= n; j++) {
if (p[j-1] === '*') {
dp[0][j] = dp[0][j-1];
}
}
for (let i = 1; i <= m; i++) {
for (let j = 1; j <= n; j++) {
if (p[j-1] === s[i-1] || p[j-1] === '?') {
dp[i][j] = dp[i-1][j-1];
} else if (p[j-1] === '*') {
dp[i][j] = dp[i-1][j] || dp[i][j-1];
}
}
}
return dp[m][n];
};
// Example usage
console.log(isMatch("adceb", "*a*b")); // Output: true
Summary:
- Time Complexity: O(m * n), where
m
is the length of strings
andn
is the length of patternp
. - Space Complexity: O(m * n), for storing the DP table.